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Information losses in continuous-variable quantum teleportation
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It is shown that the information losses due to the limited fidelity of continuous variable quantum teleporta-
tion are equivalent to the losses induced by a beam splitter of appropriate reflectivity.
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Quantum teleportation allows the transmission of an unand other technical problems of the measurement will result
known quantum state by combining the nonlocal quantunin some additional noise, which can be simulated by a clas-
coherence of entangled states with the transmission of clasical Gaussian error. In the following, however, we will fo-
sical information obtained in a joint measurement of the un-cus on the ideal quantum limit of the information transfer in
known input state and one part of the entangled phjr  order to determine the quantum state distortions originating
Ideally, the classical information transmitted contains no in-from nonmaximal entanglement. Using(R,B)) to denote
formation about the input state, and the output state is exthe initial entangled state of mod&sandB, this conditional
actly identical to the input state. However, this ideal form of state inB can be written as
guantum teleportation requires maximal entanglement. In
continuous variable quantum teleportati@-4], only non- |8(8))=(B(AR)|¢a)|a(R,B)). D)
maximal entanglement is available. As a consequence, t . . .
output state is not perfectly identical to the input state, Whilzﬁme that t_h_e output statg(3)) is not normahz_ed, since
the statistics of the joint measurement depend on the propegJe probabilityP(3) of the measurement outcongais given
ties of the input statgs]. The classical information channel
then carries |_nformat|on on the input state that may be ex- P(B)=(va(B)|¥s(B)). )
tracted, e.g., in order to eavesdrop on a quantum communi-

cation channe(6]. The relationship between the measure-paking use of the displacement operatfjl(ﬁ) and the

ment information extracted and the change of the quam“rﬁhoton-number expansion of entanglement, the eigenstates

state can be described in terms of a measurement-depend?BtA R)) and the entangled stafe(R,B)) can be expressed
transfer operatof5]. In the following, the transfer operator 54 ’ '

describing the continuous variable teleportation process is

derived and the equivalence with a feedback compensated 1 =

beam splitter is established. The information obtained in |B(A,R))=— > DaA(B)|N;MaR,

quantum teleportation can then be identified with the re- V=0

flected amplitude at the beam splitter, while the output state .

of the teleportation corresponds to the transmitted beam, dis- B > o

placed by the feedback. The loss of quantum information due la(R,B))=v1-q HZO q"ninre, (€

to the limited fidelity of the teleportation process is thus

shown to be equivalent to the loss of quanta at a bearwhere the entanglement coefficiepprovides a quantitative

splitter. measure characterizing the degree of entanglement obtained
As illustrated in Fig. 1), quantum teleportation transfers by parametric amplification. The quantum stife(8)) of

an unknown quantum state in modeusing an entangled the output mod@ conditioned by the measurement of modes

state of a reference modeand an output modB. For con- A andR is then given by

tinuous variables, this is achieved by measuring the differ-

ence%,=§<A—>A<R and the surrf/+=§/A+§/R of the orthogo- [1—q - A

nal quadrature components of the input modleand the |¥8(B))= T 20 a"Im{n[Da(=B)[¢a). (4
reference mod® The quantum statgsg(8)) of the output

modeB is then conditioned by the input stdtg¢,) in mode  For g=1, this state is a copy of the input state displaced by
A and the measurement reslt=x_+iy, , which ideally a field difference of- 8. Therefore, the final step of quantum
defines an eigenstat@(A,R)) of modesA andR. Realisti- teleportation is the reversal of this displacement by the addi-
cally, the finite resolution due to limited detector efficienciestion of a coherent field amplitudgg to obtain the final out-
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For coherent states, the output is also a coherent state with an

A R B amplitude give by the sum of the attenuated input amplitude
S]S’ﬁi‘é‘e‘r ga and a measurement dependent displacement gof (
Ig})ﬁit R=1/2 OPA —(q)B. Since the quantum state in the output depends on the
© (q] randomly varying measurement resylf the teleportation

output is generally a statistical mixture of different coherent
states. Only in the special casegt q, the amplitudeg« of

the coherent output state does not depeng@and the out-

put is a well defined pure state even if the output is averaged

(b)

Measurement of

B=az_+1y,
Output over all measurement resulis
@L \/I—‘—QEy+ feld The attenuation of the signal amplitude described by Eq.
f (6) corresponds to the losses induced by a beam splitter with
\ / a reflectivity of 1—q?. For the special case af=q, this
D(fB) property of teleportation has been pointed out previously by
Polkinghorne and Ralpf7,8], based on an analysis of the
/ quantum fluctuations in the teleportation. In the following,
Beam we will generalize this analogy by deriving the proper trans-
splitter . g .
R=1/2 formation of quantum states in a beam splitter measurement
and considering the possibility of compensating the beam
%eam splitt_er losses by feedback. This _formalism i_ncludes_ all the
Iaout splitter details necessary for an evaluation of the information ob-
ooy Bel-a tained on the system and the minimal back action on the

_ _ _ signal field. If the reflected amplitude afl—q? « is mea-
FIG. 1. Comparlson of the Setups for continuous variable quansured by elght_port homodyne detectlon, the Correspondlng
tum teleportation(a) and the feedback compensated beam Spl'tterpositive operator valued measure is given by projections

(b). Rder_lotes beam splitter reflectivities. All other parameters argnto the nonnormalized, nonorthogonal coherent states
as given in the text.

1—q
put state | o 8)) = D(9)|¥a(B)). The gain factorg al- IP(B)=\—1V1-0°B)

lows an adjustment of the teleported amplitudg. g=1

reproduces the average input amplitude in the output and .

thus optimizes the fidelity for the teleportation of high am- with J d?BIP(B))P(B)|=1, (7
plitude coherent states. As discussed in a previous géaper

the conditional output of quantum teleportation can be dexnd the transmitted state reads

scribed using the transfer operaﬁfﬁ(ﬁ),
1—q?

T ran = 1-¢g° 1—0g?%a)|ga
o B =To(B) ), [Vrand )=\~ (1-a*BIVI-d@)lqe)

T i [1—q? la— B2
P(ﬁ):<l/’A|T;(ﬁ)Tg(/3)|¢A>, = - ex;{—(l—qz) > )

5 a,B*—,Ba*)
with  T(8)= ><exp((1 ) |laa),  ®

1-0° < - .
> q"D(gB)In)(n|D(-B).
T n=0
(5)  where only the probability amplitude ¢4 3)) depends
on the outcome3. This result corresponds to E) if the
This transfer operator characterizes the teleportation procegging is equal to the entanglement coefficienfThe effects
of an arbitrary quantum state by correlating the extractedf quantum teleportation at a gain @fq are therefore iden-
information B with the quantum information in the output tical to the effects of a field measurement by eight-port ho-
state|#ou{B)). When applied to a coherent stdi@), the  modyne detection performed on the reflected part of the sig-
result reads nal field using a beam splitter of reflectivig=1—qg?. At
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other gain coefficients, quantum teleportation is equivalent twver all measurement resulf3. In general, the effect of
a feedback compensated beam-splitter measurement @uantum teleportation on the one photon stapeis given by
which the losses induced in the transmitted beam are com- 5 )

pensated using a linear feedback based on the measurement; (B)|1)=+ /1—q ex;{ _(1_qz)ﬂ> I5((g—q)ﬂ)
result 8 obtained from the reflected ligh®]. At a feedback g T 2

amplitude off 3, the output state of the feedback compen-

A2\ R*
sated beam splitter reads X((1=9°)B*|0)+a|1)). (10
. . This representation of the teleported state has only two com-
D(fB)|#rand B))=Tg=1+q(B)| ). (9)  ponents, corresponding to a displaced vacuum and a dis-

) , . placed photon-number state, respectively.gktq, the dis-

In particular, a gain of=1 corresponds to a beam-splitter pjacement is zero and the two components correspond to the
feedback amplitude of (2q)g. In this case, the measure- actual loss or transmission of the photon. At other gain fac-
ment operator of the beam-splitter setup is Hermitian, minitors, the coherent displacement can generate photon numbers
mizing the back action of the measurement to the minimah>1 in the output. Figure 1 shows a schematic comparison
hoise required by the Heisenberg principld). . of the experimental setups for the quantum teleportation

Since all quantum states may be expanded in terms ofetup and for the compensated beam splitter. Both methods
coherent states, E(9) proves the equivalence of continuous employ linear transformations on the input field mode and
variable quantum teleportation and feedback compensatagio vacuum modes, extracting information on the unknown
beam splitting with respect to both the changes in the transnput field from the homodyne detection measurements on
mitted state and the information obtained in the measurememjyg of the output modes. However, in quantum teleportation,
of B. In the special case @f=¢, no additional photons are the only physical connection between the input field and the
created in the teleportation process, indicating that all phopuytput field is given by the measurement dependent displace-
tons emitted into the output field by the parametric ampli- ment. While the beam splitter transmits the attenuated input
fier are reabsorbed in the displacement transformation. Thigeld by a direct physical interaction, quantum teleportation
effect allows a teleportation of the vacuum with a flde'lty of achieves the same result by combining the entanglement
one, making a more reliable distinction of signal pulses fromyjith the classical informatios. The entanglement coeffi-
a vacuum background possible. The transmission probabilityjent q is the measure of the nonmaximal entanglement that

for photons teleported aj=gq is equal tog®. The loss of  corresponds to the attenuation of the transmitted amplitude at
quantum information in continuous variable teleportation camgn equivalent beam splitt¢t1].

thus be expre;sed in terms of photon Iqsses_ In an experi- |, conclusion, the analysis of the transfer operéﬁg(rﬁ)
mental realization of guantum teleportation, the casqof qpq\s that the information transfer in quantum teleportation
—gcan be used to .characte.rlze the performance of th? §etu% essentially equivalent to a feedback compensated beam
Specifically, the point at whiclg=q can be found by mini-  gpjitter This result clarifies the nature of information losses
mizing the output intensity at a vacuum input. The remaining, quantum teleportation and allows an assessment of the
intensity at that point arises from the finite resolution of the;, ¢y mation extracted with respect to applications such as
measurement, imperfect phase matching, and similar technisinyous variable eavesdroppifj. Moreover, the anal-
cal problems in the optical setup. It is the|_1 p055|_ble to Se,pat')gy provides a quantification of the information transfer
rate quantum noise effects from the classical noise Com”blbroperties of nonmaximal entanglement in terms of the pho-
tions in the teleportation setup. . L ton transmission probability? and simplifies the derivation

At g>g, the loss of quantum information is compensatedof guantum coherent transfer properties for few photon in-

by the classical informgtion obtained from the measureme uts, e.g., for the entanglement swapping scheme discussed
of B. However, the original quantum state cannot be restore [7].

by this purely classical manipulation, limiting the achievable

fidelity to a value well below one. Ag<q, the displacement

actually reduces the quantum information in the output fur- One of us(H.F.H) would like to acknowledge support
ther, until atg=0, there is no correlation between the input from the Japanese Society for the Promotion of Science,
state and the output density matrix formed by integratingSPS.
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